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Abstract

4

This project has been concerned with research in discrete
mathematics and its applications. The work has involved
theoretical developments, the development of new algorithms, and
the application of discrete methods to practical problems. There
have been five major areas of emphasis. The first, graph theory
and its applications, has been concerned with graph coloring and
stability and their applications, with special classes of graphs
(such as perfect graphs, threshold graphs, competition graphs), and
with the use of graphs to solve discrete optimization problems.
The second area has involved discrete optimization, and has
emphasized location problems, preprocessing and decomposition
methods for solving discrete optimization problems, approximate
algorithms for solving such problems, and applications of
combinatorial optimization to nonlinear problems (global
optimization). The third area of emphasis has been on
combinatorial structures and their applications.’ Our research here
has been concerned with such useful combinatori;) structures as
posets, combinatorial designs;--ma i =1 matrices. It has
also been concerned With random discrete structures and their
applications and the relations between combinatorics and other
areas of mathematics. ? The fourth area has been the development of
efficient algorithms for discrete problems.; Our work on algorithms
has stressed five themes: - probability_and/élgorithms, on-line
methods, heuristics, approximation, and parallel and distributed
computing. - The fifth area of emphasis has been applications of
discrete mathematics to decisionmaking. ' We have studied group
decisionmaking and multi-person games, measurement theory and
decisionmaking, and multiple conclusion logic. Among the many
applications we have considered in this project are location of
communication centers, clustering of data, weapons allocation,
channel assignment, development of unambiguous codes,
simplification of large-scale computer models, selection of routes
to be served by a commercial or military carrier, reliability of
distribution systems, removal of inconsistencies in database
systems, and scheduling problems involving tasks, machines, or
fleets.
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A RUTCOR Project in Discrete Applied Mathematics
Grant Number AFOSR 89-0066
SUMMARY OF RESEARCH ACCOMPLISHMENTS

November 1, 1988-October 31, 1989

This summary of research accomplishments is organized into
essentially the same sections and subsections as is our original
proposal. Papers referred to by number are listed below in the
list of publications prepared under the grant during the period
November 1, 1988 to October 31, 1989.

Research work in the theory of graphs is closely related to a
variety of applied problems. Our research has been involved with a
number of graph-theoretical questions which are closely tied to
applications. The applications we have considered involve
primarily questions of communications and transportation and basic
problems in operations research such as scheduling, maintenance,
and assignment problems. The specific mathematical questions can
be divided into three areas: questions dealing with coloring and
stability, questions about the structure and properties of special
classes of graphs, and graph-theoretical questions related to
discrete optimization.

1:1. Graph Coloring and Stability

Much current work in graph theory is concerned with the related
problems of finding optimal graph colorings and finding the largest
stable set in a graph. Both of these problems are closely tied to
practical applications and our work on them has been connected to
such applications.

We have been studying T-colorings of graphs in connection
with frequency assignment problems. In such problew.s, the vertices
of a graph G represent transmitters and an edge between two
vertices represents interference. We seek to assign to each vertex
or transmitter x a channel f(x) over which x can transmit,
and for simplicity we take the channels to be positive integers.
The assignment of channels is subject to the restriction that if
two transmitters interfere, i.e., if the corresponding vertices are
joined by an edge, then the channels assigned to these transmitters
cannot be separated by a disallowed distance. To make this more
precise, we fix a set T of nonnegative integers and assign
channels so that if vertices x and y are joined by an edge of

G, then If(x)-t(y)| is not in T. The assignment f is called

a . The problems we have considered were motivated by
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practical problems we discussed with the Air Force Frequency
Management Office, the National Telecommunications and Information
Administration/Washington, the National Telecommunicatiochs and
Information Administration/Annapolis, the U.S. Cinceur Frequency
Liason Office of NATO in Brussels, and Dr. Tim Lanfear of the NATO
staff, whom we had met at NATO and invited to our Third Advanced
Research Institute in Discrete Applied Mathematics at RUTCOR. We
have studied the problem of finding the optimum order of a
T-coloring, i.e., the minimum number of different values f(x),
and the problem of finding the optimum gpan of a T-coloring, i.e.,
the minimum separation between the smallest and largest f(x)
values.

The culmination of several years’ work on the T-coloring
problem was the thesis (66). In this thesis and also in the paper
(65), we have obtained new results about the parameters order and
span by introducing a theory of forbidden difference graphs. 1In
the thesis [66], we have also obtained results under special
assumptions about the set T. We have developed a theory of list
T-colorings, which apply to the practical problem where each user
specifies a choice set of possible frequencies, from which the
frequency assigned to his transmitter must be chosen. This theory
generalizes the Erdos, Rubin, and Taylor [1979] theory of choice
numbers. Also, building on the theory of set colorings developed
by Roberts [1979b)] and Opsut and Roberts ([1981], we have developed
a theory of set T-colorings, where each transmitter receives a set
of possible frequencies, rather than a single frequency. This
theory is also relevant to the various applied problems which
motivated the theory of set colorings, namely, the mobile radio
frequency assignment problem, the traffic phasing problem, the
fleet maintenance problem, and the task assignment problem. These
problems are all discussed by Opsut and Roberts [1981] or Roberts
(1984].

In other work on coloring, we have continued our study, begun
in Hansen and Kuplinsky [1988], of the reasons why heuristics for
graph-coloring do not provide optimal colorations. This work is
contained in paper ([35]. Relative to a heuristic, a graph is

=-to- if some instance of the heuristic uses more
colors than the chromatic number; it is hard-to-color if all
instances of that algorithm do so. We have obtained small
hard-to-color and slightly hard-to-color graphs by hand for many
heuristics. Moreover, we have used the computer to find vertex and
edge critical graphs of these kinds.

We have also been studying the problem of coloring a
hypergraph. The chromatic index of a hypergraph is the smallest
number of colors needed to color its edges in such a way that if
two edges have a common vertex, they get a different color. We
have shown in [49]) that for a "nearly-disjoint" hypergraph, the
chromatic index is at most n + o(n).

The class of graphs called perfect was introduced by Claude
Berge [1961] after he studied the interrelations of such
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fundamental graph parameters as the chromatic number and the
stability number. Perfect graphs have become extremely important
in the modern applications of graph theory. An important special
class of perfect graphs, the interval graphs, have appligations in
numerous scheduling problems, scheduling the uses of faCilltleS,
traffic, workers, etc. They also have applicatlons in sequencing
and seriation of data, in measurement problems, in dec151onmak1ng,
in foundations of computer science, and in genetics. (A graph is
called an jntersection graph if it has an jntersection assignment,
an assignment of a set S(x) to each vertex x so that distinct
vertices x and y are adjacent if and only if their
corresponding sets S(x) and S(y) have a nonempty intersection.
It is an jnterval graph if there is an intersection assignment in
which every S(x) is a real interval.) One of the
characterizations of interval graphs which goes back to Fulkerson
and Gross [1965] is the following: A graph is an interval graph if
and only if the rows of the (maximal) clzque-vertex incidence
matrix can be permuted so that the ones in each column occur
consecutively. This result has led to a large literature on
matrices with this consecutive ones property for columns. We have
studied similar matrices with the consecutive ones property for
rows. This has led to the characterization of graphs whose
vertices can be linearly ordered sc that every clique is a
consecutive set, or so that every maximal stable set set is a
consecutive set, or so that every transversal is a consecutive set.
See paper [20].

c es

Many graph theory problems are extremely difficult when looked
at in general, but turn out to be tractable when restricted to a
special class of graphs. Hence, research in graph theory has in
recent years emphasized the study of rich and interesting special
classes of graphs, many of which arise from applications, and for
which efficient algorithms can often be found to solve important
optimization algorithms. Our work on special classes of graphs has
reflected this point of view.

Among the classes of graphs we have studied are the threshold
graphs. These graphs were defined in Chvatal and Hammer [1977] as
graphs which have an assignment of nonnegative weights to the
vertices so that a subset S of the vertex set is stable if and
only if the sum of the weights on S is no larger than a certain
threshold value. Threshold graphs have since been studied
intensively. Two chapters of the fundamental book by Golumbic
(1980] are devoted to threshold graphs and their natural extension,
split graphs, and many references to this subject are provided by
Golumbic. Among the uses of threshold graphs are applications to
Guttman scaling in measurement theory (Cozzens and Leibowitz
[1984])) and to synchronizing parallel processors (Henderson and
Zalcstein ([(1977]).
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A variety of authors have studied how far from being threshold
a graph is. Chvatal and Hammer [1977], Erdos, Ordman and Zalcstein
(1987], Cozzens and Leibowitz [1984], and Hammer and Mahadev [1985])
discussed the measure of non-thresholdness called the threshold
dimension, while Hammer, Ibaraki and Simeone ([1981] introduced the
threshold gap and Peled and Simeone [1987] introduced the threshold
measure. Motivated by analogous notions in the study of Boolean
functions (see paper [67]), we have introduced in paper [68] a new
measure of non-thresholdness called the threshold weight of a
graph. We have found the threshold weight of triangle-free graphs
and have a variety of results characterizing the heavy graphs,
graphs for which the threshold weight is as large as possible.

In the past year, we have studied bjthreshold graphs, graphs G
which are obtainable as an edge-intersection of two threshold

graphs H and K such that every stable set of G is also stable

in H or in K. We have found an O(n ) recognition algorithm
for such graphs. We have characterized the class of bipartite
bithreshold graphs as the union of five classes of graphs, and also
by eleven forbidden subgraphs. (See [25].)

In paper [21], we have introduced the notion of threshold
digraph. We show that the class of undirected threshold graphs,
the class of Ferrers digraphs, and some other classes of graphs and
digraphs, are properly "contained" in the class of threshold
digraphs, and that almost all the interesting properties of
threshold graphs are "valid" for threshold digraphs.

Threshold graphs have played an important role in the study of
Boolean functions, to which we return in Section 2.3. A Boolean
function is called a threshold function if there is a hyperplane
which separates the true vectors from the false vectors. 1In paper
[67], the notion of threshold function is generalized by
considering surfaces other than hyperplanes to separate the true
and false vectors. If the surface is a polynomial of degree m,
we say that the threshold function has gorder m. In paper [69], we
study the number of threshold functions of different orders.

Another class of graphs we have studied is the class of

difference graphs. A graph is a djfference graph if we can
associate a real number ai with each vertex i and a real number

T so that |a;| < T for all i and so that if i # j, then i
and j are adjacent if and only if |ai-aj| 2 T. Properties of

difference graphs are described in the paper [26]). It turns out
that these graphs are very similar to threshold graphs.

An important class of graphs with regard to applications is the
class of competition graphs and its variants. A graph G is the
competition graph of a digraph D (often assumed acyclic) if
whenever x and y are vertices of D, then there is an edge
between x and y in G if and only if there is a vertex a of
D so that (x,a) and (y,a) are arcs of D. These graphs,
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introduced by Cohen [1968), arise in communications over noisy
channels (cf. the confusion graphs of Shannon [1956]). They also
arise in the channel assignment problem mentioned above,’ which is
concerned with coloring a competition graph. They arise in
large-scale computer models of complex systems (see for example
Greenberg, Lundgren, and Maybee [1981] and Provan [1983] and Provan
and Kydes ([1980)). And they arise in the study of food webs in
ecology. See the surveys of the literature of competition graphs
by Raychaudhuri and Roberts [1985] and Lundgren [1989].

Roberts proved in [1978] that every graph is the competition
graph of an acyclic digraph if sufficiently many isolated points
are added to the graph. The smallest number of isolated points
needed is called the competition number. An old problem has been
to determine the largest competition number of a graph of n
vertices. In paper [43], we solve this problem, in the process
obtaining a generalization of the famous theorem of Turan about the
maximum number of edges of a triangle-free graph of n vertices.

Another old problem about competition number is to settle
Opsut’s conjecture (Opsut {1982)). To state this, let us define
#(G) to be the smallest number of cliques which cover all the
vertices of G and N(v) to be the open neighborhood of vertex
v. Then Opsut’s conjecture says that if @(N(v)) € 2 for all v,
the competition number of G is at most 2, with equality if and
only if @(N(v)) = 2 for all v. We have proved a modified version
of this conjecture in paper [58].

In recent years, there has been considerable research on
variants of the notion of competition graph. We have introduced in
paper (57] a variant called a p-competition graph, which arises
from a digraph by taking an edge between two vertices if and only
if these vertices have at least p outgoing arcs to common
vertices. We have obtained results about p-competition graphs
which parallel those of ordinary competition graphs. We have also
introduced in paper [47] the study of the special case p = 2,
which has led to a variety of fascinating combinatorial results.

Another variant of competition graph, introduced by Scott
(1987), is the competition-common enemy graph (CCE graph), the
graph obtained from an acyclic digraph by taking an edge between
two vertices if and only if they have incoming arcs from a common
vertex and outgoing arcs to a common vertex. The double

of a graph is defined for CCE graphs analogously
to the competition number for ordinary competition graphs. We have
investigated the double competition number of bipartite graphs,
proving that it is at most 2 if one of the classes in the
bipartition has at most four vertices. The result is obtained by
studying 0,1-matrices which can be transformed by row and column
permutations so that the pattern 1 0 1 does not appear on a
diagonal. (See paper [59].)

As we pointed out in Section 1.1, of great interest in the last
25 years has been the class of perfect graphs, first introduced by
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Claude Berge. These graphs arise in numerous applications,
including problems involving scheduling, transportation and
communications, computer systems, ecosystems, foundations of
computation, genetics, and seriation in archaeology and psychology.
In recent years, there has been a great deal of interest in
studying special classes of perfect graphs and the relations
between them. We have studied a variety of such classes. Our
major piece of work on perfect graphs which was completed in the
past year was the dissertation [61]. 1In this dissertation, we
define and study some classes of perfect graphs, establish
inclusion relations between them, and in most cases give polynomial
algorithms for the usual problems of recognition and optimization
in these classes. In several cases, we exploit the properties of
Boolean functions related to the graphs under study. Among the
classes of perfect graphs studied here are opposition graphs,
weakly triangulated graphs, quasi-parity graphs, slim graphs,
minimal non-perfectly orderable graphs, strongly perfect graphs,
preperfect graphs, and completely separable graphs.

In other work on classes of perfect graphs, we have already
referred in Section 1.1 to our work in paper [20] resulting from
the study of the consecutive ones property which arises in the
study of the special class of perfect graphs called interval
graphs. Interval graphs also play a central role in the survey
paper (63] which we have prepared on the applications of graph
theory and combinatorics in the social and biological sciences.

Results about the class of preperfect graphs are contained in
the paper ([23]. (A graph is preperfect if every induced subgraph
has a predominant vertex. Such a vertex x has the property that
there exists a vertex y of the subgraph so that every maximum
clique of the subgraph containing y also contains x or every
maximum stable set of the subgraph containing x also contains
y.) We show that such graphs are perfect and several well-known
classes of perfect graphs are contained in the class of preperfect
graphs.

An important class of perfect graphs introduced by Chvatal
(1984] is the class of ly orderab raphs, graphs which
have an order so that for each induced ordered subgraph, the greedy
algorithm produces an optimal coloring. In paper (46] we establish
a property of minimal non-perfectly orderable graphs, and use this
property to generate a class of perfectly orderable graphs which
contains the class of graphs called brittle.

Meyniel [1976] proved that a graph is perfect if every odd
cycle with at least five vertices has at least two chords. Graphs
with this property are called Meyniel graphs. A slim graph is any
graph obtained from a Meyniel graph by removing all the edges of a
given induced subgraph. We study the properties of slim graphs in
paper (45), partially solving some problems of Alain Hertz.

Meyniel graphs are also studied in paper (5). Here, we prove a
conjecture of Meyniel’s that every Meyniel graph has a certain kind




of orientation.

Golumbic and Goss [1978] introduced chordal bipartite graphs,
i.e., bipartite graphs where every cycle of length at least six has
a chord. We give a characterization of these graphs in paper [24].

cret at

A rather large effort in our project has been devoted to
discrete optimization, and we discuss this in detail in Section 2.
However, we point out here that sometimes important classes of
graphs are related to problems in discrete optimization.

A matching in a graph is a collection of edges or complete
2-vertex subgraphs which have no common endpoints. Maximal
matchings on graphs and weighted graphs arise in a wide variety of
applications in optimization problems which include job
assignments, storage of computer programs, real estate
transactions, etc. They had a classic application to pilot
assignments for the Royal Air Force during World War II. 1In the
past year, we have revised our paper (18] in which we study a
generalization of matching called an odd chain packing, a
collection of edge-disjoint chains of odd length such that all
endpoints of these chains are distinct. We extend the augmenting
chain theorem of matchings to odd chain packings and find an
analogue of matching matroids. We show that we may restrict
ourselves to packings by chains of lengths one or two and obtain a
min-max result for such packings for the special case of trees.

A dual problem to the problem of matching is the problem of
packing and covering. 1In papers [50, 51), we have obtained various
extensions of the surprising results of Frankl and Rodl ([1985] and
of Pippenger and Spencer [1989] on packings and coverings.

An important concept in discrete optimization problems is a
maximum tree or forest. We have studied t(G), the maximum
cardinality of an induced forest of a graph of n vertices. 1In
paper [70], we have obtained a sharp lower bound on t(G) for
connected simple cubic graphs without triangles. Using this
result, we show that Ewald Speckenmayer’s conjecture that t(G) 2
2n/3 for all biconnected cubic graphs G with girth 4 is true,
except for two particular graphs, which we describe.

In earlier years, we began the study of the question: What
conclusions about combinatorial optimization are meaningful in the
precise sense to be defined in Section 5.2 below. We have extended
our theory of the meaningfulness of conclusions in combinatorial
optimization by studying the meaningfulness of conclusions about
approximation algorithms for combinatorial optimization problems
and by studying error evaluation functions or performance measures.
The results are written up in paper [64] and are described in more
detail in Section 5.2.




Graph-theoretical ideas arise in our work in paper [17] on
updating the "basic algorithm" for pseudo-Boolean programming.
This work is descrir :d in Section 2.2. We show in paper [17] that
a modified version of the basic algorithm has linear-time
complexity when applied to functions associated in a natural way
with graphs of bounded tree-width. This class of graphs has
recently received a lot of attention, due in particular to their
central role in the work of Robertson and Seymour on graph minors
(see e.g., Robertson and Seymour [1986)) and of Arnborg,
Proskurowski, and others on table-based methods for various NP-hard
problems.

Graph-theoretical ideas arise in our paper (9], which describes
a new heuristic for quadratic 0-1 minimization. A graph-theoretic
representation of the procedure leads to a straightforward
implementation of it. The procedure is discussed further in
Section 2.2.

Graph-theoretic ideas play an important role in our paper (8],
in which we provide a graph-theoretic interpretation of the roof
duality concept of Hammer, Hansen, and Simeone [1984]. This
interpetation allows us to make considerable improvements in the
roof duality bound for the optimum value of an unconstrained
quadratic 0-1 optimization problem. We discuss this work in more
detail in Section 2.3.

Further, using graph-theoretical techniques, we have studied
the satisfiability problem for Horn clauses. Our results also have
applications to expert systems, and are described in Sections 5.3.
(See paper [(15].)

Discrete optimization problems arise in a large variety of
vitally important practical scheduling, allocation, planning, and
decisionmaking problems. Such practical problems have been one of
the reasons that discrete optimization has become one of the most
rapidly developing fields of mathematical programming. Another
reason is that more and more mathematical fields (e.g., group
theory, number theory, Boolean algebra, graph theory, and
polyhedral combinatorics) are becoming involved in the study of
such optimization problems. Efforts in the area of discrete
optimization have been one of the central thnrusts of our research.

2:1. location Problems

Location problems arise whenever a large set of potential sites
for placing certain units is available and a selection must be made
of the sites to be utilized. Such problems arise naturally in
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situations like placing warehouses, satellites, communication
centers, military units, or emergency services. See Hansen, et al
(1987] for a recent survey. We have studied a variety of location
problens.

In paper (27), revised during the past year, we have studied
the location problem where we are given a spatial system of
"clients’" demand functions. We propose solution methods to
determine the price(s), the number, the locations, the sizes, and
the market areas of the plants supplying the clients in order to
maximize profit. Three alternative spatial price policies are
considered: uniform mill pricing, in which the same price is
charged to clients at the plant door; uniform delivered pricing, in
which clients pay the same delivered price irrespective of their
locations; and spatial discriminatory pricing, which is such that
the firm sets client-specific prices based on their locations.

Extending these results and using also techniques of global
optimization, we have studied location for profit maximization with
a uniform delivered price per zone policy. See paper (37].

In paper [40), we present two polynomial algorithms for
determining a Lorenz point, i.e., for maximizing an equity
criterion for location, on trees and on general networks,

respectively. The former algorithm has a complexity of O(nzlogn),
where n is the number of vertices of the tree, which is smaller
than that of the algorithm of Maimon [1986,1988] by a factor of n.
The latter algorithm is, to the best of our knowledge, the first

one for that problem. It has a complexity of O(mnzlogn), where
m and n denote the number of edges and vertices of the network.

Another criterion of equity, the variance of the distribution
of distances, is studied in paper [41]. Moreover, techniques used
in this paper have also allowed us to find efficient points on a
network for the two criteria: sum of distances to all vertices and
length of the shortest path tree. Such a problem arises when
investment costs in a local distribution system (for example
electricity or sewage) are proportional to its length and usage and
maintenance costs are proportional to distances between a central
facility and the users. These results are contained in papers [41]
and [42].

Discrete optimization problems arise frequently in an
unmanageable form. There are a variety of reasons for this: huge
numbers of redundant variables are present in the original
formulation, the coefficients in the constraints are
disproportionately large, the problem involves unnecessary
nonlinearities, etc. A long series of studies aimed at finding
proper formulations of discrete optimization problems is contained
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in the papers by Bradley, Hammer, and Wolsey (1974], Dembo and
Hammer [1980], Hansen and Hammer [1981), Hansen, Hammer and Simeone
(1982], and Butz, Hammer, and Hausmann [1982). One approach is to
transform a given problem after some manipulation into a' more
structured one or a small number of more structured problems, for
which good solution methods exist; see for example Granot and
Hammer ([1974] and Hammer, Johnson, and Peled [1974] for methods of
transforming 6, l-programming problems to set covering problems and
Hammer, Hansen, and Simeone [1984] for transforming quadratic
0,1-optimization problems to vertex packing problems, to give
examples of what we have in mind. Our research effort has given
considerable emphasis to such preprocessing and decomposition of
discrete optimization problems. 1In particular, we have been
concerned over the past year with decomposition algorithms which
eliminate one variable at a time, and applying such algorithms to
Boolean and pseudo-Boolean functions.

A pseudo-Boolean function is a real-valued function on (o,l}n,
and a Boolean functjon is a 0-1-valued pseudo-Boolean function.
Such functions have a wide variety of practical applications. As
part of our study of discrete optimization problems, we have been
investigating the formulation of such problems using pseudo-Boolean
functions. Many times, Boolean and pseudo-Boolean methods allow
the considerable simplification of combinatorial optimization
problems expressed by using Boolean and pseudo-Boolean functions.
This is true for example when the Boolean function can be expressed
as a threshold function. Papers [67] and [69] deal with threshold
functions. We have already discussed this work in Section 1.3.

The "Basic Algorithm" for pseudo-Boolean programming was
originally proposed by Hammer, Rosenberg, and Rudeanu (1963a,b] and
in a more streamlined fashion by Hammer and Rudeanu (1968]. The
algorithm obtains the maximum by recursively eliminating variables.
With the advent of new methods, the basic algorithm has
progressively fallen into oblivion during the last decade. 1In
paper [17], we have reconsidered this algorithm and shown that it
is linear for a particular class of pseudo-Boolean functions
associated in a natural way with graphs of bounded tree-width. As
we pointed out in Section 1.3, this class of graphs has recently
received a lot of attention, due in particular to their central
role in the work of Robertson and Seymour on graph minors (see,
e.g., Robertson and Seymour [1986]) and of Arnborg, Proskurowski,
and others on table-based reduction methods for various NP~-hard
problems. 1In our paper, we propose a new approach to the
elimination of a variable, based on a branch-and-bound scheme,
which enables us to cut short several steps of the basic algorithm.

In paper [2], we again consider the problem of finding local or
global optima of pseudo-Boolean functions by generating an
improving sequence of points. Hammer, Simeone, Liebling, and de
Werra [1988) introduced a classification hierarchy for
pseudo-Boolean functions and derived a number of results concerning
the properties of increasing (decreasing) paths, corresponding to
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locally increasing (decreasing) computational algorithms for the
various classes. They emphasize the problem of finding local
maxima so that there is no better point within Hamming distance 1.
We show that many of their results can be generalized to find local
maxima so that there is no better point within Hamming distance k.

In paper (9), we study the unconstrained 0-1 minimization of a
quadratic pseudo-Boolean function. We present a "DDT" heuristic
for solving this problem which starts with a "devour" stage by
setting the largest coefficient to 0. This is followed with a
"digest" stage, in which all the logical consequences of the devour
stage are derived. We finish with a "tidy up" stage in which the
logical consequences derived in the previous stage are used to
restate the problem in a simpler form. The properties of this
heuristic are studied and computational experience is reported.

2.3. Approximation

A major theme in discrete mathematics in recent years has been
to find methods for approximating solutions to problems and to find
exact solutions by successive approximations. The approximation
problem has been a main focus of our efforts.

We have examined how bad the gap can be between the linear and
integer programming solutions to problems with 0-1 coefficients and
constraints. We have done so for a special class of problems by
comparing matchings with fractional matchings. We have solved the
fractional version of the celebrated Erdos-Faber-Lovasz conjecture.
Specifically, we have proved that if H 1is a nearly disjoint
hypergraph on n vertices (i.e., a hypergraph with any two sets
intersecting in at most one point) and ¥ is the set of matchings
of H, then there is a function w from ¥ into the positive
reals so that for all edges A in H, X w(M) 21 and I w(M)

AEM MEN
< n. 1In related work, we have shown that for a k-uniform
hypergraph with weights on the edges, the maximum weight fractional
matching differs from the maximum weight matching by a factor of at

most k + 1 + k"1 (and this is best possible). The unweighted
case was conjectured by Lovasz and proved by Furedi some years ago.
We have generalized these results to the case of non-uniform,
unweighted hypergraphs. See paper (55].

One approach to approximation is to associate with a given
problem a "relaxation" of it, i.e., an easy problem the solution of
which provides information about the solution of the original
problem. Hammer, Hansen, and Simeone [1984] associated a linear
program to a discrete optimization problem and showed that it
provides a bound to the original one and fixes the optimal values
of some of the variables. This technique is called
We have been building on this fundamental notion of roof duallty to
study quadratic 0-1 optimization problems. Quadratic 0-1
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optimization problems (and their generalization to polynomial 0-1
optimization problems) are among the most important combinatorial
problems. The most prominent applications of such problems are in
"gselection™ decisions. These include the selection of R&D
projects, the selection of petroleum leases upon which to bid, the
selection of items to be included in any volume-limited or
weight-limited space (the "knapsack" problem), and the selection of
routes to be served by a commercial or military carrier. Any
situation in which some items need to be selected from a large
group of items, and for which an additive utility can be assigned,
either individually or jointly, to the items selected, can be
modelled as a quadratic or more general polynomial 0-1 optimization
problem.

In paper (8], we provide a graph-theoretic interpretation of

roof duality. We obtain an 0(n3) max-flow algorithm to compute
the roof dual of a quadratic pseudo-Boolean function in n
variables. We also obtain a decomposition theorem for quadratic
pseudo-Boolean functions, improving the persistency result of
Hammer, Hansen, and Simeone. Based on this decomposition and the
iterated application of roof duality we significantly improve the
roof duality bound. Computational experiments on problems up to
200 variables are also presented.

In paper [14], we describe two polynomial-time algorithms which
are equivalent to the roof-duality method of Hammer, Hansen, and
Simeone. We then describe a third algorithm which improves on the
bound computed by the first two whenever it is different from the
minimum of the function. The second algorithm can be interpreted
as a sequence of applications of a simple pseudo-Boolean operation
called exchange. Similarly, the third algorithm is based on an
operation called pseudo-Boolean consensus, which generalizes
exchange.

In related work, in paper {7], we generalize three different
approaches to obtain upper bounds for the maximum of a quadratic

pseudo-Boolean function f over (0,1)“. The original approaches
(complementation, majorization, and linearization) were introduced
by Hammer, Hansen, and Simeone, who showed that they yield the same
bound. Our generalization yields three upper bounds which may be
different and we explore their relationships.

We have already referred in Section 1.3 to our work on the
meaningfulness of conclusions about combinatorial optimization. 1In
particular, we have been examining in paper [64] the meaningfulness
of conclusions about approximation algorithms for combinatorial
optimization problems and the meaningfulness of statements
involving error evaluation functions or performance measures. We
discuss this further in Section 5.2.
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2.4. Applications of combinatorjal optimization to Noplinear
Problems .

In operations research, one makes the distinction between
algorithms designed to find a local optimum and algorithms designed
to find the global optimum. The vast majority of nonlinear
programming algorithms belong to the first category, but increasing
attention is being devoted to the latter one. Many practical
problems in the engineering literature can be looked at as
constrained global optimization problems. We have found that many
of the ideas underlying algorithms for combinatorial optimization
could be transposed to the field of global optimization.

Our major work on the applications of combinatorial
optimization to nonlinear proclems has been the thesis (60], which
studies several areas of global optimization. The global
optimization problem is to solve the following problem: minimize
(or maximize) f(x) such that x € S, where f is a real-valued

function of n variables and S is a subset of 2°. 1In general,
this problem is NP-hard and very difficult to solve in practice.
Much of the thesis is concerned with the case where n = 1 (the

univarijate cage) and where f is a Lipschitz function, i.e., ¢

is defined on an interval (a,b] and for all x, y in (a,b],
[£(x) - £(y)| € L{x-y|,

where L 1is a constant. An analytical expression for f may not
be known; it may be given, for instance, by an oracle. Such a
problem is interesting due to its simplicity, but also because it
arises in many applications. For instance, it corresponds to the
optimization of performance of systems, which can often be measured
for given values of some parameter(s) even if the governing
equations are unknown. Examples are the maximization of yield in
agriculture, a function of the amount of fertilizers used, and the
optimal tuning of electronic apparatus. Moreover, many
multivariate global optimization problems become easy to solve once
the values of one or of a few variables are fixed. They can thus
be viewed as implicitly defined global optimization problems in
these variables only. Examples are the location of plants to
maximize profit subject to uniform mill or delivered pricing
policies (see paper [27), which was discussed in Section 2.2) and
determination of the optimal departure time for a commuter in a
congested network. In the thesis, we develop a variety of
algorithms for dealing with this global optimization problem. We
also study more general problems where the function f being
optimized is a univariate function which can have derivatives up to
order 6. And we present an analytical method for dealing with
global optimization problems which are multivariate and have
constraints.

The global optimization of univariate Lipschitz functions is
also studied in two papers, [30] and [31]. We consider such
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problems as finding the globally optimal value of £f: finding a
globally e€-optimal value of f and a corresponding poipt;
localizing all globally optimal points; finding a set of disjoint
subintervals of small length whose union contains all globally
optimal points; and finding a set of disjoint subintervals
containing only points with a globally e-optimal value and whose
union contains all globally optimal points. We summarize and
discuss algorithms from the literature, presenting them in a
simplified and uniform way, in a high-level computer language, and
we introduce new algorithms. Extensive computational comparison of
algorithms is also presented.

Building on papers by Hansen, Jaumard, and Lu [1989a,b,c),
which were supported by an earlier AFOSR-grant, we have studied in
paper (29] the extent to which global optimization problems can be
solved using analytical methods. To this end, we propose a series
of tests, similar to those of combinatorial optimization, organized
in a branch-and-bound framework. The first complete resolution of
two difficult test problems illustrates the efficiency of the
resulting algorithm. Computational experience with the program
BAGOP, which uses the computer algebra system MACSYMA, is reported
on. One hundred test problems from the compendiums of Hock and
Schittkowski [1981] and others are solved.

The analytical methods developed in paper [29] are applied to
bilevel linear programming in the paper [34]. Bilevel programs
arise in situations where multiple decisionmakers with divergent
objectives intervene in decisions to be made. We discuss this work
in some detail in Section 5.1.

At the end of the 1950’s, Fortet ([1959,1960] stressed the
usefulness of Boolean methods in the formulation and solution of
operations research problems involving qualitative decision
variables. Such problems may be expressed, in the most general
case, as nonlinear programs in 0-1 variables with nonlinear
constraints. Several approaches to their solution have been
extensively studied during the last thirty years. The four main
ones are linearization, algebraic, enumerative, and cutting-plane
methods. 1In the paper (32], we survey more recent developments.
We then compare the efficiency of various approaches through
extensive computational experiments.

ures . i cati

Combinatorial structures such as matroids, graphs, block
designs, and partially ordered sets have a wide variety of
applications in practical problems. Our work on such combinatorial
structures has emphasized graphs (see Section 1). We have,
however, also found block designs, posets, matroids, 0,1 matrices,
clutters, and hypergraphs useful in our work. An increasingly
important theme in discrete mathematical research is to investigate
random structures of various kinds. We have studied a variety of
questions involving random structures and probabilistic approaches
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to combinatorial problems. We have also found combinatorial
methods useful in studying problems which are usually looked at
from non-combinatorial points of view. p

3.1, Useful Combinatorial Structures

As mentioned above, combinatorial structures of all kinds are
important in a wide variety of problems. 1In this section, we
describe our work on combinatorial designs, matroids, clutters, 0,1
matrices, posets, hypergraphs, and other combinatorial structures.

One important combinatorial structure is a poset. Posets are
among the fundamental objects of discrete mathematics. They have
applications to the theory of computation, optimization, game
theory, preference and decisionmaking, etc. We have studied a
variety of problems concerning posets. For example, suppose that
P is a poset and p(x<y) gives the fraction of linear extensions
of P in which x < y. We have shown in paper [53] that any poset
P which is not a chain contains x and y with

1l 1
33 < P(X<y) < 1 - ==,

The proof is very simple and is based on the Brunn-Minkowski
Theorem. The result is not as good as the result

3/11 < p(x<y) < 8/11
given some time ago by Kahn and Saks [1984). However, the argument
here is far simpler and in particular is the easiest way known of
proving the existence of some positive constant § for which the
above statement holds with
6 < p(x<y) < 1-6.
(Such a result is what is needed in computer science applications.)

In paper (22], we have studied large antichains in posets. We
have discovered the surprising fact that (for large enough n),

there exist antichains in 2(™ naving size at least c2" with ¢
approximately ‘-2. The proof is nonconstructive. Furedi and Kahn
had earlier given a constructive lower bound of about n'l/6 2“,

-1/2

disproving the upper bound of O(n 2™ conjectured by Engle.

An upper bound of the form (1-e)2n, € a postive constant, has
recently been obtained by Kostochka.

Order relations have also been studied in the paper [3]. Here
we have studied the pinimum reversing set in a digraph representing
a preference order. This is a minimum set of arcs whose reversal
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makes the preference order into a transitive tournament. This
concept also arises in the engineering literature, where,it is
called a feedback arc set. We show that every acyclic digraph D
is the minimum reversing set of some preference order which defines
a tournament and study the reversing number r(D) of D, the
smallest number of vertices in such a tournament.

Another important combinatorial structure is a clutter. A
clutter is an ordered pair (V(H),E(H)), where V(H) 1is a finite
set and E(H) is a set of subsets of V(H) such that no set in
E(H) 1is contained in another. There is a natural correspondence
between clutters and monotone Boolean functions. We have already
discussed the significance of Boolean functions in Section 2.2. A
clutter is defined to be k-monotone, completely monotone, or
threshold if the corresponding Boolean function is k-monotone,
completely monotone, or threshold. These various types of Boolean
functions were introduced in the early 1960’s because of the study
of threshold Boolean functions (see Sections 1.2 and 2.2). A
characterization of k-monotone clutters in terms of excluded
minors is presented in paper [19]. This result is used to derive a
characterization of 2-monotone matroids, and of 3-monotone matroids
(which turn out to be all the threshold matroids). (Matroids, of
course, are another interesting combinatorial structure, which have
proven to be of crucial importance in the foundations of
computational complexity.)

Still another interesting combinatorial structure is a
hypergraph. We have already described in Section 1.1 our results
in paper [49] on coloring of hypergraphs.

Matrices of 0’s and 1’s have played an important role in
discrete mathematics. We have already discussed in Section 1.1 the
0,1 matrix called the (maximal) clique-vertex incidence matrix,
which has played such a central role in the characterization of
interval graphs. (See paper {20].) We have discussed in Section
1.2 our reduction (in paper [59]) of the problem of determining the
double competition number of a bipartite graph to the question of
whether every 0,1 matrix can, by row and column permutations, be
reduced to a 0,1 matrix with the pattern 1 0 1 not appearing on a
diagonal.

Matrices of +1’s and -1’s are also of interest. Random *1
matrices are studied in paper [52), where we study the probability
that such a matrix is singular.

Matrices are also important in the theory of qualitative
stability. Here, we study a system of homogeneous linear
differential equations with constant coefficients defined by a
matrix, and we study the stability of a solution. If the stability
of the solution depends only on the sign pattern of the matrix, we
say that the system and the matrix are gualitatively stable. The
notion of qualitative stability has been studied at great length in
part because of its many implications, for economics, ecology, etc.
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The problem of characterizing qualitatively stable matrices has
been solved using signed digraphs. The literature on this subject,
and its various applications, has been surveyed in the paper (63].

Combinatorial designs have played a role in our work as well.
Combinatorial designs arise from practical problems in experimental
design, and have led to theories which are very critical to the
design of error-correcting codes for communicating with unmanned
missiles and rockets in the atmosphere or in space. Among the most
important combinatorial designs are the projective planes. 1In
Section 3.2, we shall describe a result about the choice of a
random set of lines in a projective plane, which we obtained in
paper [48].

We have also used combinatorial designs to study the

A-hyperfactorizatjion of the complete graph K2n‘ This is a

collection of l-factors for which each pair of disjoint edges
appears in precisely A of the l-factors. Such a
A-hyperfactorization is called trjvial if it contains each 1-factor
of Kzn with the same multiplicity and gimple if each 1-factor

appears at most once. Cameron [1976] and Jungnickel and Vanstone
(1987] had found examples of nontrivial A-hyperfactorizations for
special values of n. In paper [10], which is a revised version of
a paper prepared in an earlier year, we have shown the existence of

nontrivial, simple A-hyperfactorizations of Kon for all n 2 5.

We have also found uses for generating functions and Stirling
numbers, important tools of combinatorics, in our research. A
difference graph (not the same as the difference graph defined in
Section 1.2) is a bipartite graph such that all the neighorhoods of
one of the classes in the bipartition are comparable by inclusion.
In paper [62), we enumerate labeled difference graphs by the size,
number of isolated vertices, and number of distinct vertex-degrees
of each of the classes. The results use generating functions and
lead to counts expressed in terms of Stirling numbers of the second
kind.

3.2. Random Discrete Structures and their Applicationg

An increasingly important theme in discrete mathematical
research is to investigate random discrete structures of various
kinds. The reason for the emphasis on random structures is in part
because of their connections to probabilistic algorithms and in
part because of their relevance in formulating models for applied
problems. Moreover, sometimes a probabilistic approach can lead to
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